Spectrometer-Emulsion Track Matching

Reinhard Schwienhorst University of Minnesota

Long report E872 phone meeting, 8/10/99

Outline

- Motivation
- Analysis
 - method
 - Matching to random tracks
 - further steps: scattering and vertexing
- Examples: neutrino interactions
- Magnetic moment candidate analysis
- Conclusions
- Outlook

Motivation

- Neutrino-electron interactions produce a single electron with momentum parallel to the beam
- Candidate events found in the data are suspected to be produced by out-of-time muons
- solution: match the spectrometer track to an emulsion track
 - determine if it a match can be found or
 - find a vertex or
 - check if another track scattered

Analysis method

- Find starting emulsion tracks that could match the spectrometer track
 - everything within a 90% confidence interval $(\sigma < 1.63)$

$$\sigma = \sqrt{\left(\frac{\Delta pos}{0.5 \text{mm}}\right)^2 + \left(\frac{\Delta angle}{5 \text{mrad}}\right)^2}$$

- Matching to random tracks:
 - expect 2 matches on average
 - expect >10 matches in the eyes

Matching to random tracks

Further steps

- Check if another track scattered
 - true for 10% of all starting tracks
 - slightly higher in the eye region
- check if there is a vertex
 - true for 30% of all starting tracks
 - only 15% in the eye region
- check track pulseheight
 - large (ph>ph $_{\mu}$ +3 σ) for 20% of the starting tracks
 - 40% in the eye region

Scattering and Vertex track angle

Check technique: tau event

- Event 3024_30175
- pick one nice spectrometer track
- correct angle using eyes
- match to emulsion tracks (2)
 - draw all matches
 - find other emulsion tracks that intersect matches (5)
 - draw these also
 - for each of them, check for a scatter (2)
 - draw each of the scattered tracks
 - find emulsion tracks upstream that could have produced a scatter (1)

Run 3024, event 30175

Run 3062, event 10903

0.10 • • • • • • • • • • • • •

Run 3062, event 10903

Magnetic Moment candidate analysis

- 3 m-files
- single spectrometer track
- match to emulsion track in 90% confidence interval (CI)
 - 84, 14, 9 matches
- remove scattering, vertex, large pulseheight
 - 66, 10, 6 matches remain
- try also matching in 63% CI
 - -8, 1 (pl 22), 0 matches
- check start plate
 - randomly distributed in matched tracks
 - probability dependence on Z: see graph

Z-dependence of the probability for a single track (in B4)

Magnetic moment candidate emulsion analysis: Conclusions

- The track matching procedure
 - can be used outside the eyes
 - probability of a random match ≈50%
 - might be used at the edge of the eyes
 - ≈10 random matches
 - number can be reduced with more cuts
 - cannot be used in the eyes
 - ≈50 random matches
 - cuts reduce the number to ≈ 10
- The magnetic moment candidate tracks are in the center or at the edge of the eyes

Conclusions

- Spectrometer-to-emulsion track matching can be used to find the interaction vertex
- It can be used to find candidate tracks for a magnetic moment analysis
 - only if the track is not near the eye
- This analysis has been done with Root
 - the emulsion analysis tools exist

Outlook

- I will focus on the spectrometer analysis
 - obtain complete magnetic moment candidate event sample
- Emulsion analysis of candidate events will only be done if the single track is not in one of the eyes